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Resonance overlap, secular effects, and nonintegrability: An approach from ensemble theory
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The time evolution of a classical multiresonance nonintegrable Hamiltonian system with few degrees of
freedom is analyzed on the ensemble level. Time-dependent perturbation analysis is applied to the Liouville
equation to determine the most secular series for the time evolution of the expectation value of some physical
observables. In contrast to the so-call expansion for thermodynamic systems, which is well known in
nonequilibrium statistical physics, we findyat expansion in small nonintegrable systems with few degrees of
freedom. This asymptotic expansion exists only on the level of ensemble but not on the level of trajectories.
Moreover, the time symmetry of this expansion is broken as in nonequilibrium statistical mechanics. The
relation of the Chirikov overlapping criterion to our approach is discussed.
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[. INTRODUCTION butions(generalized functiong5], such as Dirac'ss func-
o . tion in the continuous variables at the resonance points. The
Beginning in the 1950s Van Hovd, 2] (in quantum me-  resonance singularities then lead to secular effects that are
chanicg, and Prigogine and Bales¢B-7] (in classical me-  characterized by the? expansion. However, one cannot ap-
chanicg applied asymptotic perturbation analysis to theply this manipulation directly to SPS since there are no such
Liouville equation of Poincaré nonintegrable systems withdistributions for the discrete spectrum. Nevertheless, one
infinite degrees of freedoifithe so-called large Poincaré sys- possible extension has been achieved by one of the authors
tems (LPS) [5,8-1Q]. By collecting the most diverging (T.P) in SPS by restricting one’s interest to a domain of
terms int (the most secular effectrising from the reso- phase space, such as inside the stochastic layer around sepa-
nance effects in the asymptotic limithe so-called Van ratrices, in which the characteristic period is so long that one
Hove’s A2t limit with t—o, A —0, and keeping\?t finite, can approximate the discrete spectrum by a continuous one
where\ is the coupling constaptthey derived kinetic equa- [24—28. In this case, one can derive a kinetic equation that
tions that break time symmetry. This important discoveryhas essentially the same structure as the one in(sB&also
revealed a deeper relation between the origin of irreversibilRef. [22] for a similar discussion of this consideratjoihis
ity in the basic laws of physics and nonintegrability of dy- kinetic equation des_cr|b_es.|rrever5|ble processes in SPS, such
namical systems due to the resonance singularities on ttfe> the Amold diffusion inside a stochastic layer.

level of ensemble. This has then led to several importan} In ;hlstpa}:é_er, Vtvhe will deatl \?."th atm(i)ret_challenlgln_g FrOSbISS
developments in modern nonequilibrium statistical physics em ot extending the asymptotic perturbation analysis to

. . . .~ for situations where the characteristic periods are not so long,
f;rilhtgsnscf%rrrril:ttilgr? $gyr1]%m'tﬁge]’cs(‘;:r?§é ?(ag]p:gitrzqdrenpiglsjgh such as the case outside the stochastic layer. In this case, one
. IS o " can no longer roxim he discr rum n-
tations of the Hamiltoniafil7—2(, and of the Liouville—von can no longer approximate the discrete spectrum by a co

. . tinuous one. A way out of the difficulty due to the discrete
Neumann operator outside the Hilbert spf8d.0,14,15.21  ghactrym, as will be shown, is to deal with an ensemble
Therefore, it is natural to ask ’ '

if there is a similar 42 mics governed by the Liouville equation instead of a

asymptotic pertu_rbation analysi_s for small classical nomntetrajectory dynamics governed by the Hamilton's equation of
grable Hamiltonian systems with few degrees of freedomp,yiion \we will consider the ensemble average of observ-

we WigF():a!’l these I;arr.liltonkia'n ny?tems “sfmall Poincaré S.yﬁ'ables so that the small denominators appearing in the pertur-
fcefr_ns_( dS to em?fas%et e\|/rv : eren(r:]e rom S_yStzr?fS WIt hation series can be treated as a distribution of the continu-
It? Inite elg_glgeses Od rsegsom‘ % N nﬁte that a majofr r: erenceus generalized momenta under the phase space integration.
etween LPS an IS that the spectrum of the UNper- rpqe neeq to consider the small denominator under the
turbed Liouville operator is continuous in LPS, while it is yp,qe snace integration for SPS was recognized some years
dlscrgte in SPS. . . . ago by Prigogine, Grecos, and Geol@&]. By simply ap-
It is well known that nonintegrability leads to the failure plying the kinetic theory developed for LPS in nonequilib-

of ordinary _per;urk;]atlon analysis dut;éo resl(l)r:jance singularizym statistical mechanics they have suggested that the same
ties appearing in the series expansitire small denominator  yiyetic description might exist in SPS. However, this idea,

p_roblem with a division by _ze|)o[22,22-]. In. LPS with €on- — \while going in the right direction, is not enough to solve the
tlnuoqs spectrurr_\,_ t_here is a well-defined mathema.tlc_ mall denominator problem for the discrete spectrum case in
meaning of the division by zero as an appearance of dIStr'SPS. In this paper, we will show some differences in dealing
with the small denominator problem in SPS from LPS.
Let us assume that the Liouville operatoof the system
*E-mail address: cbli@physics.utexas.edu consists of the unperturbed integrable fdajtand the inter-
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action partéL that makes the whole system nonintegrable. In
the case of LPS, one may perform the integration over the
continuous spectrum dfy in each small denominatdpropa-

gaton which is understood as an individual distribution in e )
the continuous wave vectors. Hence, after the integrations 0.6
over the wave vectors for each propagator, a product of two ¥/
propagators with two independent continuous wave vectors 0.4
gives us a product of two ordinary functions.

On the other hand, in the case of SPS, the small denomi- 0.2
nator is treated as a distribution in the momeitestead of .
the wave vectosunder the phase space integration of the
ensemble average as mentioned above. As a result, a product
of two propagators should be treated asirggle distribution -0.2
in the momenta, but not as a product of two distributions. We
will show that the product of two propagators may lead to
extra singularities of the resonances, which does not appear
if we perform the integration over the continuous spectrum
on each propagator as in the case of LPS. These new singu-

larities then lead to stronger secular effects in SPS than in 0.4

LPS. 7 ;
We note that the above treatment of the small denomina-

tor is possible only on the ensemble level but not on the level 0.2}

of trajectory. In other words, we are extracting some infor-
mation of the dynamics which appears only on the ensemble
level. One of the unique properties of the ensemble approach
is the appearance of broken time symmetry.

The main results of this paper are as follovils) By con- —0.2
sidering the evolution of the expectation value of observ-
ables we find that the most secular effect from each single
resonance is given by an asymptotic series with time depen- FIG. 1. The stroboscopic plot of our system witk0.01 show
dencer¥2(V\t)*™3 for m=1 in comparison to thé\?)™  the onset of chaos as the separation of the resonascescreases.
contribution for LPS(2) We consider the contributions from The orbits of the system are plottedtat2mn/w,,n=1,2, -
the interference between resonances and find secular effects

with oscillation corresponding to the higher harmonics of thegerms and systems with more than two degrees of freedom.
system. Despite its simplicity, this Hamiltonian displays the typi-
In order to carry out our procedure more clearly we will cg| features of the onset of chaos as shown in Fig. 1. In fact,
apply the asymptotic perturbation analysis to a nonintegrablégne Hamiltonian(2) has been considered by many authors in
multiresonance Hamiltonian system with two degrees ofkpe past such as Chirikoi28], Escandg29], Chandre and
freedom Jauslin[30] and has proven to be a good platform to study
_ the transition to chaof31]. However, these considerations
H(31, 2 61, 02) = Ho(J, Jg) + AaVa(6y) + AoVo( 6, 62), were all based on the trajectory point of view in which in-
1 formation of the system is extracted from the phase space
with structure. In this paper, we will analyze the dynamics on the
level of ensemble based on the Liouville equation.
Ho=J2/2 + wydy, In Sec. Il, we will briefly review the Liouvillian formal-
ism and the resolvent formalism of the time-dependent per-
Vy(6y) = cosfy, Vo(6y,0,)=cos,— 6,), ) turbatio_n analysis. _The asymptotic pertur_bation analysis will
be applied to the single resonance case in Sec. Ill and to the
where\,, \, are the perturbation parameters and we assumiaterference between resonances in Sec. IV. In Sec. V, we
w,>0. In this paper, we consider the casge=\,=\ and we  will discuss the broken time symmetry of the most secular
assumer <1. An extension to the casg # \, is straightfor-  contributions. Finally, the relation of the Chirikov overlap-
ward. This Hamiltonian has two primary resonances locateging criterion and our results will be commented on in Sec.
atJ;=0 andJ;=w,, respectively, in the phase spgsee Fig. VI.
1(a)]. The domain of the phase space variables are given by
—0<J <o, 0<J, for the generalized momenta, and 0
<6 <2m i=1,2 for the“angle” variables. Although we II. LIOUVILLIAN EORMALISM
only consider the particular Hamiltoniai2) in this paper, ) ) )
one can see that our construction can be applied to more On the level of ensemble, we consider the time evolution
general Hamiltonian systems with more than two resonancef the probability densityp(J, 6,t) [with J=(J;,J,) and 6
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=(61, 6,)] satisfying the Liouville equatiof5] the action variables, i.e.p(J,0,t=0)=pg(J,t=0)/(2m)2
; (j ét) wherepg is the zeroth Fourier component of the probability
i pL, 0 _ Lp(j, é,t), 3) density
ot
L. 1 2 R -
where p(J,0,t) = (;) E pa(J, e’ (10
L=Log+\éL;+ N6, (4) ’

is the Liouville operator defined by the Poisson bracketWe also assume thm(j) andpa(j,t:O) are smooth enough
L=i{H, }. In Eq.(4), Lo is the unperturbed Liouville operator in J; so that the higher-order derivatives of these functions
corresponding tddg while 6L; and 8L, are the perturbations with respect tal; do not give significant contributions in the
corresponding to the two resonance tefifjsandV, in Ed.  perturbation expansion. We further assume tpgd, t=0)
(1), respectively. The initial value problem @f(J,6,t) is | anishes at the boundary of the domainjof
solved formally in terms of the resolvent operator(L1+2) With the above assumptions, and using E&.and (6),
as[d] the expectation valuéA(j))t is given by
L. ) L. -1 —izt L.

p(3,6,t) =€"p(J,6,0) = —f dz——p(J,60,0), (5 o
2mJec L-z = -1 > Ciztas 3 K 1
(AN === | 2| dzeZAQ)> (-)) > 2

2 c k=0

where the contou€ lies above the real axis of and goes Al Al2l,... qlk-1l

from o« to —o for t>0. The time-dependent perturbation R 1
analysis can then be carried out on Ef) using the geo- ><<O|5L|ﬁ[k'1]>F<ﬁ[k_l]|5L|ﬁ[k_2]>
metrical expansiolfi5] n -z
o0 1
1 1 1\ X —————— (7| sLnlY)
—— =2 (=M (51_+6L —) 6 k2. () -
L7 g)( )LO—Z( 1 Z)LO—Z (6) n O-z
1 - .
Since the unperturbed motion is integrable, the eigenspec- X ——— (/Y| 6L 0)pg(J,0), (12)
trum of Ly can be found easily as At Q-z
Lo|fi) = (ﬁ,d)m} with <§|ﬁ> = ieiﬁ-é, ) where we have inserted complete sets of eigenstates of the
27 unperturbed Liouville operator. This expression will be the

R R starting point of our asymptotic perturbation analysis dis-
where Q=dHy/3J=(J;,w,) is the unperturbed frequencies cussed in the following sections.
for our systempi=(n;,n,) is an integer vector, and we have  Since single resonance systems are integrable, one can
used Dirac’s bracket notation. In the following discussion,expect that nonintegrability of multiresonance systems
the matrix elements of the perturbed Liouville operatélr comes from the interference between the resonances. There-

=6L,+6Ly) fore, it is convenient to consider the two contributions sepa-
) rately in order to contrast their properties. This is done by
(A[SL|A") = (i) fdzge—iﬁ-(;(ﬂ_eiﬁ’-(;, (8)  dividing the time evolution of the ensemble averdged)),
2m into two parts; the single resonance part and the resonance

interference part. The single resonance part consists of terms

in EQ. (11) which contain eithepL; or 6L, but not both, and

(Ny,nploLy|Iny £ 1,0y = + %(91, the resonance interference part consists of terms involving
both 6L, and dL,.

will be used frequently, where

(nngSLafny £ 1,0, F 1) = £ 31, 9)
I1l. CONTRIBUTIONS FROM SINGLE RESONANCE
and all other matrix elements vanish. In E§) and hence-
forth, we have used the notationg=d/3J; and o, We first consider the single resonance part. From(Ep,
=313~ 3l 3d,. one can easily verify that the zeroth-order contributiorkin

As mentioned in the Introduction, we will consider the js the unperturbed motiotA(j»io):(A(j)}t:o, where the su-

time _evqution of the expectation value of o_bservables forperscript(O) indicates the order of approximation. On the
SPS in order to overcome the small denominator problem.th hand. si dd ber of t it 6 §
For simplicity, we will consider in this paper observables thatONer Nand, since an odd numper of transitions f0m0_| )
. N is forbidden by the allowable transition of the matrix ele-
only depend on the momentum variablg®., A=A(J) SO ens(9), we conclude that all odd-order contributions van-
thatA is in the|0)(0| subspace of the Fourier expansioas ish in Eq. (11). Therefore, the first nontrivial contribution

well as initial probability densities that are independent ofcomes in second order.
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A. Second-order contribution A4 gzt .
. 3—f dz— JdZJA(J)
In second order, one can see from the nonzero matrix 2%miJ: z

element(9) that all possible transitions belong to the single
resonance part involving eithét, or éL,. To show how the ><(91< 1 1 ) 2( 1 1 ):|(91P6(j 0)
Jl J 1 L

. ) o - d -
secular effect is evaluated, let us first look at the transitions -z Jtz ! 1=z Jitz
8y 8Ly

involving 8L, only (|0)—|+1,0)<|0)). The corresponding
contribution to(A(j))iz) is given by Eq.(11) as

2

(15

where the factoz 3 comes from the zeroth stat@ in the
) igta > transitions(14). It is natural to ask if the secular effect of Eq.
dJ c dze*'AQJ) (15) comes from the third-order pole3 similar to the case
of A2 calculation discussed previously. If it would be the
1 - 1 =z case, we would obtain the most secular effect of
><n:2+1 ?<0|5L1|n,0>nJ1_Z(n,0|é1_1|0>p0(J,0) NS dze?/ 2~ \*2. However, a closer look at Eq15)
2‘ - reveals a higher-order singulariy® and leads to a much
-\ e’ - 1 o stronger secular effect of*f dze'?/Z8~\*>. In fact, the
_ — 2 - - C ’
T 224 fdz pea Jd JA(J)‘?l[‘]l_ z J+ Z]&lp‘)(‘]’o)’ extra pole comes from the product of the propagators in Eq.

2mi

(12) (195
where we have used the explicit form of the matrix elements ( 1 1 ) 2( 1 1 ) 2z 2z
(9). It is well known that the secular effect comes from the -z J+z 1 -7 d+z = J%‘ 2 1Ji_ 2

pole contribution az=i0* [5] and the factor lim.;o+[1/(J;

-2)-1/(J;+2)]=27i8(J;) becomes a distribution in this (16)

limit [32]. Thanks to the momentum variable integration, the

5 function can be integrated and gives a definite value evefor simplicity, let us first consider the produa/(J;-2%)]

though the denominator vanishes at the resonance point X[2/(J3-2?)] (i.e., without the derivatives?). If we would

=0. The predominate time dependence of Ekp) is then  miscount the pole in Eq15) asz 3, then one would encoun-

given by the secular contribution that comes from the residuéer the product of § function [z/(37-2%)][z/(J}-7%)]

of the second-order pole?, i.e.,\?[¢ dze'?/Z2~\?%, since  — (im)28(J1) 8(J,) [by using 8(Jy) *z/(32-2) in the limit z

it grows asymptotically in time. Note that this secular time —i0* as beforg which diverges even under the integration

dependence\’t of SPS is the same as the one in tk&  over the momentum variables. However, this problem can be

expansion of LPS. We will see shortly that a significant de-solved if we carefully extract additional poles from the prod-

viation from LPS starts from the* calculation. We also note uct of the propagators, i.e., by considering

that this consideration of the resonance effect is only pos-

sible on the ensemble level where we integrate over the mo- 7 7 1[ P }

mentum variables. 2 2_2 S| 2|
The secular effect of the transition involvind., can be W-29-7 2l (-2

estimated in a similar way. Here we summarize the result . . )
from all \2 transitions as Now if we use another expression of tiéefunction &(J;)

«23/(3?-29)? in the limit z—i0" [32], we can avoid the
product of & function by extracting the extra poke?.
Furthermore, the derivative operatcﬁ%in Eqg. (16) will
give rise to additional poles af? since they act od; and
]’ (13) increase the power of the denominator in E#j6) by 2.
J=wy

17

> —\2 > >
AP = =T l | astaad 301

3,=0

. f 43 315G [1205(3,0)]

Therefore, all togethdiz 2 from the zeroth statf®), z'* from

the product of two propagators in E.7) andz 2 from the

Iderivatives we obtain the sixth-order pole®, which results

in stronger secular effects aft>,\%*4,--- in SPS. For large

time scale, the most secular term)st° is dominated.
Although the above procedure extracting the secular ef-

fects is transparent in understanding the origin of the extra
As mentioned before, a stronger secular effect is obtainedingularities of the resonance, it is not conveniently applied

in SPS than in LPS. To understand the origin of the strongefo higher-order calculations because identifying thinc-

secular effect, we consider thé contribution and look at a tion from the product of propagators could be highly non-

wherex= means the most secular terms and any other contr
butions have been ignored.

B. Higher-order contributions

representative transition generated only dhy trivial. Therefore, we developed a different approach to ex-
e P Ay tract the same secular effect as discussed above. To illustrate
|0)«—|+1,0)«|0)—|+1,0)—|0). (14) this method, we again consider the transiti@d). The same
. result can be obtained by first evaluating the residue of the
From Eq.(11), its contribution to(A(J))E“) is given by factors(16) in Eg. (15) at the poles on either the upper or
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lower-half complexJ; plane. In the following calculations, we will choose the poles on the upper-half plane. Thus, we evaluate
the secular effect of Eq15) by

A gzt f - ( 1 1 ) ( 1 1 ) -
——(2mi)?Re Reg | dLAQ)d - Fa - opg(J,0
2 2™ 5’{ z lef[ L e ey | ey LIS

]

4 —izt -1 R N
S §—<2wi>2Re§{ . (E [ @A oo

2% z=i0
—\45 . .
;25,” f dL[BAD a6 3, 01| (18)
: 3,=0

where the extra pole of 2 is automatically generated from the residue of dpéntegration at the resonance point. Therefore,
we obtained the same secular time dependence as our previous consideration.
One can repeat a similar calculation for all other possible transitions with arbitrary powerHsre, we summarize the
most secular effects for the single resonance part of our system. The detailed derivation is given in Appendix A. The result is

Ntm  \Ow (- 1)™2mgAm-3.4 }
—_— + —_— + .o + + P
2  (16)(5!) 22™1(4m - 3)!

(AQ)) = f d2IA)pg(d, 0)+ {_

x J d, [[AD) L0163, 05,0 + [012AD) [d1206(3, 0| ]

Jl=w,
- o DA™y, S S

:f d2IA)p5(3,0) + N2 el d& [[1AD)][0106(3,0)]]5,=0 + [012A(3) ][ d1206(J,0) ] 1,

w1 277 H(4m=3)! ' =0,
(19

wherea,, is determined by the residues of the propagal&is (18)]
' 1 1 1 an

Res d R, = . 20
%Jf{g}{ﬁm—ﬂ -z w2 G-z A -ﬁ—z] zme 20

HereE{’ﬁ} means summation over the most secular transitionfrom the resonance effects, this implies that SPS have stron-
defined in Appendix A, andé} are poles of the propagators 9er resonance effects than LPS.
(ﬁ[i]-(z—z)‘l on the uoper-half comples. plane In Fig. 2, we show the comparison between the most
ppe pied; p oo secular effectgcalculated up to\*®) of the single resonance
For small\, Eq.(19) gives a predominant contribution to >

- — ) part (19) with the numerical simulation foA(J)=J; and
(AQ)); for t~1/y\. T_herefore, we obtain a stronger secular” - IED S N S e SV ith
contribution of A¥2(\\t)*™2 for SPS instead of thé\2)™ P o(J,t=0)/(2m)*= (V)€ 5(‘].2 ‘]20). wit 3)1
contribution in LPS. Since the secular contributions come 0-01:910=0-3, J20=1.0, ando-=1.0. This choice o> \A
ensures thabg(J,t=0) is wide enough to cover both primary
resonance regions. It also guarantees tbaﬁ ,t=0) is
smooth enough so that its higher-order derivatives with re-
spect toJ; do not give significant contributions.

The numerical result is obtained by solving the full

11.875

11.865

Q rress | —_ Numerical Simulation Hamilton’s equation of motion with an ensemble of trajecto-
v Tntegral ries distributed according to the above choice of the prob-
Representation ability density. We have chosen 4000 samples to calculate
AR ~ Most Secular Series the ensemble average df. We see that Eq(19) gives a
good approximation to the full dynamics up te=5/\\
e 0 20 4‘0 éO 80 100 120 140 160 180 200 = 50

In spite of the good agreement between our theoretical
result and the numerical simulation in a certain domain of
FIG. 2. Comparison of the most secular seri&S) with the  time, there are three major discrepancies as shown in Fig. 2.

numerical simulation and the integral representati2®) for A(J) First, a large discrepancy for-50 is due to the truncation of
=J;. the most secular series &t®. Second, the slight deviation of

t
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the most secular contributions above the numerical resulions of motion is given by elliptic functions. Using this
comes from the fact that we have not taken into account th@xact solution, one can then expafiid)); perturbatively in
resonance interference in our theoretical expressid). \ in the form as

Third, the flat part of the numerical curve &t0 (which is

known as the Zeno effedB83]) has not been recovered by (AWQ)); = (A))o = N32f50(7) + N2F(7) + O(N5/2),
our theoretical calculation, as the Zeno effect is known to

come from nonsecular contributions. (21)

In order to improve the approximation for time scaleswhere r=\\t~O(1) in the time scale oft~1/\\, and
much longer than 5/A, we need to evaluate terms in Eq. f () with n=3 are functions expressed by the phase space
(19) much higher order than'®. However, this is not an easy  jntegration of elliptic functions. Therefore, in the asymptotic
task since the general expression of the coefficigyis very  |imit considered in this papefi.e., with t—w=, A —0, and
complicated. Nevertheless, by using the fact that the singlgeeping 7=\t finite), the predominant contribution to Eq.
resonance contribution comes from the integrable part of th§21) is given by (A= (A))ot\¥25(7). Here we

Hamiltonian, one can obtain a compact expression of th = . )
series expansiofL9) in an integral form. To obtain this in- Present the explicit expression bf,(7) as the integral rep-

tegral representation, we note that the integrable part is egesentation of Eq(19) with A(3)=J1 and p5(3)= p1(J1) (3,
sentially a simple pendulum where the solution of the equa=Jog)

2712 o 7T\J"X2 +1
J xfdJJ J))- —m\¥%p;(J 1+f dx%(—,— -1
(U 1J1p1(J1) 3 TN p1(Jn) L 2xK[V2/(1 +?)]

1 2K(\X) - ~ 1 T 2\“"
+ 23)\3/2pi(\]1)f de _dbxcn(7+ b, Vx)cn(b, Vx)+ 25/2)\3/2p£(\]1)f de db
0 0 -7

—2K(\x)

x [—ZK;X)dr’{K(x)b/w+ 1] - 1] [ \ 5= Kbl - 1} , 22

2

X2

where K(x) is the complete elliptic integral, ¢n,x) and The interference contributions first appear in fourth order.
dn(u,x) are the Jacobian elliptic functions, anef(J,) We use the following transition as an example to demon-
=dp,(J;)/dJ,. The detailed derivation of this expression will strate the essence:
be presented in a separate pafsl. We show in Fig. 2 the
good agreement of the integral representa{ip®) and the

i - [ oLy ) oLy
numerical result for time scales much longer thana/ |6><*|1,0><—|6><—|— 1,1><*|6>. (23

IV. INTERFERENCE BETWEEN RESONANCES >
To simplify our presentation, we considé(J)=J; and
In this section we consider the contributions from thepd(j):pl(Jl)a(Jz—Jzo) with pl(Jl):(4773/2/0-)e‘(31‘J10)2/‘72 as
resonance interference. We will see that the interferencg the last section. The contribution of the transiti@3) to
leads to new poles on the gomple>plal_ne(be5|desz:|0+) (% §4) is then given by[see Egs(11) and(9)]
related to higher harmonics in the nonlinear system and gives
rise to secular effects in powers bfs well as oscillations
corresponding to higher-order resonances. -4 ezt 1 1
For the weakly coupled cage,> J\) in which the sepa- c f dz 3 dJ; aﬁ
ration between the two primary resonances is large compared 2*mJe =z = dit oy
with the width of their separatrices, one may expect that the (24)
interference part gives a small correction to the single reso-
nance part discussed in the preceding section. However, the
consistent estimation of the interference effect is importantvhere theJ, integration has been carried out using integra-
even in the weakly coupled case, as this is the first nontriviation by parts.
correction that comes from the nonintegrability of the sys- We now apply the procedure discussed in the last section.
tem. In the following discussion, we will restrict our consid- The secular effect of Eq24) can be obtained by evaluating
eration to this weakly coupled case. the residue of the poles on the upper-half pland,ods

J Jy),
lel( )
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-\ gzt { 1 ,
) dz g Re J pa(J
2t Jc Z =2 -2 L tw-2 1P1(J1)
_ oM f ot { 2p1(J0) 2043
= 24 c Z3 ((1)2 _ 22)3 (wz _ 22)2
(3) J
+ pi( 1)] , 25
Wy — 2z 3=z

wherep!(Jy) = dpy(J;)/43;. In Eq.(25), a new pole appears
atz=w,/2 in contrast to the single resonance cgs®, e.g.,
Eq. (18)]. This new pole comes from the interference
between the propagatofs,;—z)~ and (-J;+w,-2)"%. One
then sees from Eq(25) that the poles[(w,—22)™",n
=1,2,3
lead to the secular effect with oscillations
(Nt2e7io2V2 \4temie2V2 ...) while the polez3 gives rise to
secular effects in powers of(\*? \%,--+).

The secular effect with the oscillati@'“2/2 can be easily

PHYSICAL REVIEW E 69, 066120(2004)

. sixth
4107 1 order
Sfourth
2410 order
1076 |
0 T T
10 20 30 40 0
t /
2410° eighth
gnt
order
-4x10°8

FIG. 3. Thex?, A%, and\® order contributions of the most secu-
lar effect for the interference part.

= =0+ [Idar, + [0, + e, a0,
(27)

related to the periodic orbit associated with the secondary

resonance located ai=w,/2 for our systenjsee Fig. a)].
This periodic orbit comes from the particular solutiGh
=wyl2, 61=wyt/2, 6,=w,t) of the Hamilton’s equation of
motion, as the angular frequenay/2 of the angle variable
6, gives the oscillatiore™ 22 in the secular effect. However,
in the trajectory approach it is generally not easy to find

higher periodic solutions of nonintegrable systems. By

"

m

evaluating the secular effects in the ensemble approach, o
can automatically take into account the contributions fro
the resonance effects of these higher periodic motions.
A similar calculation can be applied to othgf transi-
tions. After summing the contribution from alf* transitions,
we find that terms proportional t%*t?> cancel out and tha*
most secular effect of the interference part(®f), is given

| |
|

5Pi(\]1) + 5P'1'(31) + 3P(13)(31) + P(14)(31)
ng 4wg 8w§

5p1Jy) _5piy) 33 _ pi’(d)
ng 4wg Sw%

-\ (

8(,!)2 leo

-\ (

8(02 J1=w2
27\4'[7791(31)

w,

(eia)zt/Z + e—iwzt/Z) (26)

Ji=wyl2

Using the same procedure, we can calculate the most secul
effects from higher-order contributions. Similarly, we find
secular effect with oscillation, e.g., tad and\® most secu-
lar effect are found to bex\®t’(€“?+e7“?)/w3 and
NS+ g2 [ w3, respectively. In Fig. 3, we show the
secular effects of the\, A6, and \® contributions foro
=1.0, J14=0.3, J5p=1.0, »,=0.8, andA=0.01. We see that
the \* contribution with oscillation frequency,/2 is domi-
nant in the time scale df~1/\\ for the interference part.

In order to compare our theoretical prediction in this sec-

tion with the numerical simulation, we need to extract the
contribution of interference part from the full dynamics. So
we write (Jq); in the form of

where [(Jps, o, represents the interference part (©f),

[i.e., terms in Eq(11) containing bothdL; and 6L,] while
[(Jl>t]&1 and [<J1>t]&2 denote the contribution from the
single resonance part. From this relation, we see that the
interference part is given by(Jpds, s,= i~ [(Ia,
[(3Dds, ~(Ieeo

We plot the comparison between our theoretical result
e sum of\*, A8 and\® secular effect from the interference
parf) and the numerical simulation in Fig. 4 with the same
parametrization as in Fig. 3. In this figure, the time evolution
of the ensemble averadgd,); is numerically calculated by
choosing 5000 samples of trajectories. On the other hand, we
have used the exact analytic expression in terms of the ellip-
tic functions for[(Jp)]s, with i=1,2.

V. BROKEN TIME SYMMETRY

As in the case of LPS, the secular effects of SPS found by
evaluating the resonance effects break time symnj&irylo

4108
— Theoretical
10 Prediction
¢ —*— Numerical
3 Simulation
5 2¢100
—=
A
L 4e106
0 . ; .
10 20 30 40 50 \y 60
t
-1+10°8

FIG. 4. Comparison of theoretical prediction with numerical
simulation for the interference part.
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see this, let us express the most secular s¢ti®sin terms
of a “time evolution operatorZ(t) as

(AQ)) — (AQ) oo = f PIADE(1)ps(3,0, (28
with
3(t) = N27(9,8(31) 9, + 12031 — wp) dr0)

2( DA™,
o1 2™ Y(4m-3)!

(29)

which gives the most secular effects of the time evolution.

Let us denote the time-reversal operatorTbyThe basic
properties ofT are listed in Appendix B. Using these prop-
erties, we see thai-Q=[-QT, i.e., the eigenvalues of the
unperturbed Liouville operatoL, are invariant under the
time-reversal operation. As a result, we haveS(J;)
=58(J)T and Té(J,—wy)=8(J;—w,)T. Similarly, we have
T(ny01+Nydp) =(Nd1+Nedy) T for the interaction[see Egs.
(B3)«B5)]. Therefore, all together we have

T2 =3()T # 2(-1)T. (30

On the other hand, the time-reversal symmetry of the tim
evolution operatotJ(t) =exp(-iLt) is expressed bysee Ap-

PHYSICAL REVIEW E69, 066120(2004)

the single resonance part. For example, the ratio ofthe
secular effect of the interference p&®6) to the \* single
resonance contributiofl8) is given by

2 (8

for t~1/+\. Hence contribution from the interference partis
a small correction in the weakly coupled cage,> \\).
However, EQ.(33) shows that the interference part is no
longer a small correction to the single resonance part in the
strongly coupled cas@w,~ W\). _

We note that the conditiom,~ J\ is exactly the same
condition for the onset of global chaos analyzed by Chirikov
[28] in terms of the overlapping condition of the resonances
on the level of trajectory dynamics. It is interesting to find
the same condition by analyzing the secular effects on the
level of ensemble.

In conclusion, we have described in this paper an

1

(1)2t

(33

éalsymptotlc perturbative approach of studying analytically the

secular effects of nonintegrable small Hamiltonian systems

with few degrees of freedom on the ensemble level. Further-
more, we have shown that these secular effects break time
symmetry.

pendix B
TU(t) = U(-1)T. (31

Hence, the time symmetry of the most secular effect in Eq.
(30) is broken in comparison to Eg31).

The origin of the broken time symmetry is the resonance
effect which is evaluated as th&function. The appearance
of the & function comes from the analytic continuation of the
denominator into the complex plane as in the case of LPS
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( A >2m |: e—iZI . 1 1 1 R :|
-1)™M2mi) =] ResRes —fdJ A ) ce po(J,0) |, Al
(= D)™M(27ri) 2) o ety 2 L[1A) ] n[zm_l]Jl—Z 1n[2m_2]J1_Z ln[l]Jl—z 100(J,0) (A1)
where{&={&,,&,,---} are poles of the propagators on the upper-half compjgiane. EquatiotAl) shows that these poles
should take the forng;=z/p;,i=1,2,--, wherep;# 0 are positive integers.

Note that extracting the most secular effect from E41l) means extracting the highest-order polezai0*. Without
changing the highest-order pole structure, we proceed by moving the fapg6d, 0) to the front of the curly bracket. The
most secular effeafAl) then becomes

(- )M(2 i)()\>2m J d(,A9)) (d1p5(3,0)) Re e Res 1 1 P (A2)
_ JENES , _
2 201 1Po 3420 zmio* 2 3-1 ni2mily, -z ln[2m-2]J1_Z 1n[1]Jl-Z

We also note that the residue evaluated at the phtegé} in T(C1p1 + Copo) = € Tpy + C,Tpy, (B1)
Eq. (A2) vanishes if all{&} lie above(nli!>0 for all i) or _ .
below (n1< 0 for all i) the reald, axis. Therefore, the most fOr @ny complex numbers, , and functionsp, ,, wherec, ,
secular effects are given by transitions having both positivéS the complex conjugate @h . Its actions on the time and
and negativel'’s which we call the most secular transitions. Phase space variables are given by

For these transitions, it is easy to see that Tt=tT, (B2)

1 1 for the time variable
ReS (91 e (91 ’
segL My -z ey — 2 it -2 Ty=-JT, To=67T (B3)

= w (A3) for the pendulunm(J; is momentum and); is angle,
i . . TJZ = JzT, T02 == 02T, (B4)
wherecy, (2m-11... jf11; IS @ constant depending on the transi- ) _ _ _ _
tion. By using Eq(A3) and evaluating the residue at the pole fOr the harmonic oscillatogJ, is action andf, is anglg and
z=i0" in Eq. (A2), we pbtain Eqs(19) and(20) by defini_ng Ty =-nT, Trp=n,T, (B5)
an, to be the summation of the constamtgyzm-11... 11, in

Eq. (A3) from all most secular transitions. The terms corre-for the Fourier conjugate variablesof the angle variables.
sponding to the resonandg=w, in Eq. (19) can be verified Hence, the time-reversal operator commutes with the Liou-

by the same procedure shown above. ville operatorL
TL=LT, (B6)
APPENDIX B: THE TIME-REVERSAL OPERATOR . . .
and the time-reversal symmetry of the time evolution opera-
The time-reversal operatdris antilinear[35], i.e., tor U(t)=exp(-iLt) is expressed by Eq31).
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