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The time evolution of a classical multiresonance nonintegrable Hamiltonian system with few degrees of
freedom is analyzed on the ensemble level. Time-dependent perturbation analysis is applied to the Liouville
equation to determine the most secular series for the time evolution of the expectation value of some physical
observables. In contrast to the so-calledl2t expansion for thermodynamic systems, which is well known in
nonequilibrium statistical physics, we find aÎlt expansion in small nonintegrable systems with few degrees of
freedom. This asymptotic expansion exists only on the level of ensemble but not on the level of trajectories.
Moreover, the time symmetry of this expansion is broken as in nonequilibrium statistical mechanics. The
relation of the Chirikov overlapping criterion to our approach is discussed.
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I. INTRODUCTION

Beginning in the 1950s Van Hove[1,2] (in quantum me-
chanics), and Prigogine and Balescu[3–7] (in classical me-
chanics) applied asymptotic perturbation analysis to the
Liouville equation of Poincaré nonintegrable systems with
infinite degrees of freedom[the so-called large Poincaré sys-
tems (LPS) [5,8–10]]. By collecting the most diverging
terms in t (the most secular effect) arising from the reso-
nance effects in the asymptotic limit(the so-called Van
Hove’s l2t limit with t→`, l→0, and keepingl2t finite,
wherel is the coupling constant), they derived kinetic equa-
tions that break time symmetry. This important discovery
revealed a deeper relation between the origin of irreversibil-
ity in the basic laws of physics and nonintegrability of dy-
namical systems due to the resonance singularities on the
level of ensemble. This has then led to several important
developments in modern nonequilibrium statistical physics,
such as correlation dynamics[5], subdynamics and nonuni-
tary transformations[9–16], the complex spectral represen-
tations of the Hamiltonian[17–20], and of the Liouville–von
Neumann operator outside the Hilbert space[9,10,14,15,21].

Therefore, it is natural to ask if there is a similar
asymptotic perturbation analysis for small classical noninte-
grable Hamiltonian systems with few degrees of freedom.
We will call these Hamiltonian systems “small Poincaré sys-
tems(SPS)” to emphasize their difference from systems with
infinite degrees of freedom. We note that a major difference
between LPS and SPS is that the spectrum of the unper-
turbed Liouville operator is continuous in LPS, while it is
discrete in SPS.

It is well known that nonintegrability leads to the failure
of ordinary perturbation analysis due to resonance singulari-
ties appearing in the series expansion(the small denominator
problem with a division by zero) [22,23]. In LPS with con-
tinuous spectrum, there is a well-defined mathematical
meaning of the division by zero as an appearance of distri-

butions (generalized functions) [5], such as Dirac’sd func-
tion in the continuous variables at the resonance points. The
resonance singularities then lead to secular effects that are
characterized by thel2t expansion. However, one cannot ap-
ply this manipulation directly to SPS since there are no such
distributions for the discrete spectrum. Nevertheless, one
possible extension has been achieved by one of the authors
(T.P.) in SPS by restricting one’s interest to a domain of
phase space, such as inside the stochastic layer around sepa-
ratrices, in which the characteristic period is so long that one
can approximate the discrete spectrum by a continuous one
[24–26]. In this case, one can derive a kinetic equation that
has essentially the same structure as the one in LPS(see also
Ref. [22] for a similar discussion of this consideration). This
kinetic equation describes irreversible processes in SPS, such
as the Arnold diffusion inside a stochastic layer.

In this paper, we will deal with a more challenging prob-
lem of extending the asymptotic perturbation analysis to SPS
for situations where the characteristic periods are not so long,
such as the case outside the stochastic layer. In this case, one
can no longer approximate the discrete spectrum by a con-
tinuous one. A way out of the difficulty due to the discrete
spectrum, as will be shown, is to deal with an ensemble
dynamics governed by the Liouville equation instead of a
trajectory dynamics governed by the Hamilton’s equation of
motion. We will consider the ensemble average of observ-
ables so that the small denominators appearing in the pertur-
bation series can be treated as a distribution of the continu-
ous generalized momenta under the phase space integration.

The need to consider the small denominator under the
phase space integration for SPS was recognized some years
ago by Prigogine, Grecos, and George[27]. By simply ap-
plying the kinetic theory developed for LPS in nonequilib-
rium statistical mechanics they have suggested that the same
kinetic description might exist in SPS. However, this idea,
while going in the right direction, is not enough to solve the
small denominator problem for the discrete spectrum case in
SPS. In this paper, we will show some differences in dealing
with the small denominator problem in SPS from LPS.

Let us assume that the Liouville operatorL of the system
consists of the unperturbed integrable partL0 and the inter-*E-mail address: cbli@physics.utexas.edu
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action partdL that makes the whole system nonintegrable. In
the case of LPS, one may perform the integration over the
continuous spectrum ofL0 in each small denominator(propa-
gator) which is understood as an individual distribution in
the continuous wave vectors. Hence, after the integrations
over the wave vectors for each propagator, a product of two
propagators with two independent continuous wave vectors
gives us a product of two ordinary functions.

On the other hand, in the case of SPS, the small denomi-
nator is treated as a distribution in the momenta(instead of
the wave vectors) under the phase space integration of the
ensemble average as mentioned above. As a result, a product
of two propagators should be treated as asingle distribution
in the momenta, but not as a product of two distributions. We
will show that the product of two propagators may lead to
extra singularities of the resonances, which does not appear
if we perform the integration over the continuous spectrum
on each propagator as in the case of LPS. These new singu-
larities then lead to stronger secular effects in SPS than in
LPS.

We note that the above treatment of the small denomina-
tor is possible only on the ensemble level but not on the level
of trajectory. In other words, we are extracting some infor-
mation of the dynamics which appears only on the ensemble
level. One of the unique properties of the ensemble approach
is the appearance of broken time symmetry.

The main results of this paper are as follows:(1) By con-
sidering the evolution of the expectation value of observ-
ables we find that the most secular effect from each single
resonance is given by an asymptotic series with time depen-
dencel3/2sÎltd4m−3 for mù1 in comparison to thesl2tdm

contribution for LPS.(2) We consider the contributions from
the interference between resonances and find secular effects
with oscillation corresponding to the higher harmonics of the
system.

In order to carry out our procedure more clearly we will
apply the asymptotic perturbation analysis to a nonintegrable
multiresonance Hamiltonian system with two degrees of
freedom

HsJ1,J2,u1,u2d = H0sJ1,J2d + l1V1su1d + l2V2su1,u2d,

s1d

with

H0 = J1
2/2 + v2J2,

V1su1d = cosu1, V2su1,u2d = cossu1 − u2d, s2d

wherel1, l2 are the perturbation parameters and we assume
v2.0. In this paper, we consider the casel1=l2=l and we
assumel!1. An extension to the casel1Þl2 is straightfor-
ward. This Hamiltonian has two primary resonances located
at J1=0 andJ1=v2, respectively, in the phase space[see Fig.
1(a)]. The domain of the phase space variables are given by
−`,J1,`, 0,J2 for the generalized momenta, and 0
øui ,2p, i =1,2 for the “angle” variables. Although we
only consider the particular Hamiltonian(2) in this paper,
one can see that our construction can be applied to more
general Hamiltonian systems with more than two resonance

terms and systems with more than two degrees of freedom.
Despite its simplicity, this Hamiltonian displays the typi-

cal features of the onset of chaos as shown in Fig. 1. In fact,
the Hamiltonian(2) has been considered by many authors in
the past such as Chirikov[28], Escande[29], Chandre and
Jauslin[30] and has proven to be a good platform to study
the transition to chaos[31]. However, these considerations
were all based on the trajectory point of view in which in-
formation of the system is extracted from the phase space
structure. In this paper, we will analyze the dynamics on the
level of ensemble based on the Liouville equation.

In Sec. II, we will briefly review the Liouvillian formal-
ism and the resolvent formalism of the time-dependent per-
turbation analysis. The asymptotic perturbation analysis will
be applied to the single resonance case in Sec. III and to the
interference between resonances in Sec. IV. In Sec. V, we
will discuss the broken time symmetry of the most secular
contributions. Finally, the relation of the Chirikov overlap-
ping criterion and our results will be commented on in Sec.
VI.

II. LIOUVILLIAN FORMALISM

On the level of ensemble, we consider the time evolution

of the probability densityrsJW ,uW ,td [with JW =sJ1,J2d and uW

FIG. 1. The stroboscopic plot of our system withl=0.01 show
the onset of chaos as the separation of the resonancesv2 decreases.
The orbits of the system are plotted att=2pn/v2,n=1,2 ,̄ .
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=su1,u2d] satisfying the Liouville equation[5]

i
] rsJW,uW,td

] t
= LrsJW,uW,td, s3d

where

L = L0 + ldL1 + ldL2 s4d

is the Liouville operator defined by the Poisson bracket
L= ihH , j. In Eq.(4), L0 is the unperturbed Liouville operator
corresponding toH0 while dL1 anddL2 are the perturbations
corresponding to the two resonance termsV1 andV2 in Eq.

(1), respectively. The initial value problem ofrsJW ,uW ,td is
solved formally in terms of the resolvent operator 1/sL−zd
as [5]

rsJW,uW,td = e−iLtrsJW,uW,0d =
− 1

2pi
E

C
dz

e−izt

L − z
rsJW,uW,0d, s5d

where the contourC lies above the real axis ofz and goes
from ` to −` for t.0. The time-dependent perturbation
analysis can then be carried out on Eq.(5) using the geo-
metrical expansion[5]

1

L − z
= o

k=0

`

s− ldk 1

L0 − z
SsdL1 + dL2d

1

L0 − z
Dk

. s6d

Since the unperturbed motion is integrable, the eigenspec-
trum of L0 can be found easily as

L0unWl = snW · VW dunWl with kuW unWl =
1

2p
einW·uW , s7d

where VW =]H0/]JW =sJ1,v2d is the unperturbed frequencies
for our system,nW =sn1,n2d is an integer vector, and we have
used Dirac’s bracket notation. In the following discussion,
the matrix elements of the perturbed Liouville operatorsdL
=dL1+dL2d

knW udLunW8l ; S 1

2p
D2E d2ue−inW·uWdLeinW8·uW , s8d

will be used frequently, where

kn1,n2udL1uun1 ± 1,n2l = ± 1
2]1,

kn1,n2udL1un1 ± 1,n2 7 1l = ± 1
2]12, s9d

and all other matrix elements vanish. In Eq.(9) and hence-
forth, we have used the notations]1;] /]J1 and ]12
;] /]J1−] /]J2.

As mentioned in the Introduction, we will consider the
time evolution of the expectation value of observables for
SPS in order to overcome the small denominator problem.
For simplicity, we will consider in this paper observables that

only depend on the momentum variables[i.e., A=AsJWd so

that A is in the u0Wlk0W u subspace of the Fourier expansion], as
well as initial probability densities that are independent of

the action variables, i.e.,rsJW ,uW ,t=0d=r0WsJW ,t=0d / s2pd2

wherer0W is the zeroth Fourier component of the probability
density

rsJW,uW,td = S 1

2p
D2

o
nW

rnWsJW,tdeinW·uW . s10d

We also assume thatAsJWd andr0WsJW ,t=0d are smooth enough
in J1 so that the higher-order derivatives of these functions
with respect toJ1 do not give significant contributions in the

perturbation expansion. We further assume thatr0WsJW ,t=0d
vanishes at the boundary of the domain ofJW.

With the above assumptions, and using Eqs.(5) and (6),
the expectation valuekAsJWdlt is given by

kAsJWdlt =
− 1

2pi
E d2JE

C
dze−iztAsJWdo

k=0

`

s− ldk o
nWf1g,nWf2g,¯,nWfk−1g

1

z2

3k0W udLunW fk−1gl
1

nW fk−1g · VW − z
knW fk−1gudLunW fk−2gl

3
1

nW fk−2g · VW − z
¯knW f2gudLunW f1gl

3
1

nW f1g · VW − z
knW f1gudLu0Wlr0WsJW,0d, s11d

where we have inserted complete sets of eigenstates of the
unperturbed Liouville operator. This expression will be the
starting point of our asymptotic perturbation analysis dis-
cussed in the following sections.

Since single resonance systems are integrable, one can
expect that nonintegrability of multiresonance systems
comes from the interference between the resonances. There-
fore, it is convenient to consider the two contributions sepa-
rately in order to contrast their properties. This is done by

dividing the time evolution of the ensemble averagekAsJWdlt

into two parts; the single resonance part and the resonance
interference part. The single resonance part consists of terms
in Eq. (11) which contain eitherdL1 or dL2 but not both, and
the resonance interference part consists of terms involving
both dL1 anddL2.

III. CONTRIBUTIONS FROM SINGLE RESONANCE

We first consider the single resonance part. From Eq.(11),
one can easily verify that the zeroth-order contribution inl

is the unperturbed motionkAsJWdlt
s0d=kAsJWdlt=0, where the su-

perscript s0d indicates the order of approximation. On the

other hand, since an odd number of transitions fromu0Wl to u0Wl
is forbidden by the allowable transition of the matrix ele-
ments(9), we conclude that all odd-order contributions van-
ish in Eq. (11). Therefore, the first nontrivial contribution
comes in second order.
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A. Second-order contribution

In second order, one can see from the nonzero matrix
element(9) that all possible transitions belong to the single
resonance part involving eitherdL1 or dL2. To show how the
secular effect is evaluated, let us first look at the transitions

involving dL1 only su0Wl←
dL1

u±1,0l←
dL1

u0Wld. The corresponding

contribution tokAsJWdlt
s2d is given by Eq.(11) as

l2

2pi
E d2JE

C
dze−iztAsJWd

3 o
n=±1

1

z2k0W udL1un,0l
1

nJ1 − z
kn,0udL1u0Wlr0WsJW,0d

=
− l2

22pi
E dz

e−izt

z2 E d2JAsJWd]1F 1

J1 − z
−

1

J1 + z
G]1r0WsJW,0d,

s12d

where we have used the explicit form of the matrix elements
(9). It is well known that the secular effect comes from the
pole contribution atz= i0+ [5] and the factor limz→i0+f1/sJ1

−zd−1/sJ1+zdg=2pidsJ1d becomes a distribution in this
limit [32]. Thanks to the momentum variable integration, the
d function can be integrated and gives a definite value even
though the denominator vanishes at the resonance pointJ1
=0. The predominate time dependence of Eq.(12) is then
given by the secular contribution that comes from the residue
of the second-order polez−2, i.e., l2eC dze−izt/z2,l2t, since
it grows asymptotically in time. Note that this secular time
dependencel2t of SPS is the same as the one in thel2t
expansion of LPS. We will see shortly that a significant de-
viation from LPS starts from thel4 calculation. We also note
that this consideration of the resonance effect is only pos-
sible on the ensemble level where we integrate over the mo-
mentum variables.

The secular effect of the transition involvingdL2 can be
estimated in a similar way. Here we summarize the result
from all l2 transitions as

kAsJWdlt
s2d � − l2tp

2 FUE dJ2f]1AsJWdgf]1r0WsJW,0dgU
J1=0

+ UE dJ2f]12AsJWdgf]12r0WsJW,0dgU
J1=v2

G , s13d

where� means the most secular terms and any other contri-
butions have been ignored.

B. Higher-order contributions

As mentioned before, a stronger secular effect is obtained
in SPS than in LPS. To understand the origin of the stronger
secular effect, we consider thel4 contribution and look at a
representative transition generated only bydL1

u0Wl←
dL1

u±1,0l←
dL1

u0Wl←
dL1

u±1,0l←
dL1

u0Wl. s14d

From Eq.(11), its contribution tokAsJWdlt
s4d is given by

l4

23pi
E

C
dz

e−izt

z3 FE d2JAsJWd

3]1S 1

J1 − z
−

1

J1 + z
D]1

2S 1

J1 − z
−

1

J1 + z
DG]1r0WsJW,0d,

s15d

where the factorz−3 comes from the zeroth statesu0Wl in the
transitions(14). It is natural to ask if the secular effect of Eq.
(15) comes from the third-order polez−3 similar to the case
of l2 calculation discussed previously. If it would be the
case, we would obtain the most secular effect of
l4eC dze−izt/z3,l4t2. However, a closer look at Eq.(15)
reveals a higher-order singularityz−6 and leads to a much
stronger secular effect ofl4eC dze−izt/z6,l4t5. In fact, the
extra pole comes from the product of the propagators in Eq.
(15)

S 1

J1 − z
−

1

J1 + z
D]1

2S 1

J1 − z
−

1

J1 + z
D =

2z

J1
2 − z2]1

2 2z

J1
2 − z2 .

s16d

For simplicity, let us first consider the productfz/ sJ1
2−z2dg

3fz/ sJ1
2−z2dg (i.e., without the derivatives]1

2). If we would
miscount the pole in Eq.(15) asz−3, then one would encoun-
ter the product of d function fz/ sJ1

2−z2dgfz/ sJ1
2−z2dg

→ sipd2dsJ1ddsJ1d [by usingdsJ1d~z/ sJ1
2−z2d in the limit z

→ i0+ as before] which diverges even under the integration
over the momentum variables. However, this problem can be
solved if we carefully extract additional poles from the prod-
uct of the propagators, i.e., by considering

z

J1
2 − z2

z

J1
2 − z2 =

1

z
F z3

sJ1
2 − z2d2G . s17d

Now if we use another expression of thed function dsJ1d
~z3/ sJ1

2−z2d2 in the limit z→ i0+ [32], we can avoid the
product ofd function by extracting the extra polez−1.

Furthermore, the derivative operators]1
2 in Eq. (16) will

give rise to additional poles ofz−2 since they act onJ1 and
increase the power of the denominator in Eq.(16) by 2.

Therefore, all together[z−3 from the zeroth stateu0Wl, z−1 from
the product of two propagators in Eq.(17) andz−2 from the
derivatives] we obtain the sixth-order polez−6, which results
in stronger secular effects ofl4t5,l4t4,¯ in SPS. For large
time scale, the most secular term ofl4t5 is dominated.

Although the above procedure extracting the secular ef-
fects is transparent in understanding the origin of the extra
singularities of the resonance, it is not conveniently applied
to higher-order calculations because identifying thed func-
tion from the product of propagators could be highly non-
trivial. Therefore, we developed a different approach to ex-
tract the same secular effect as discussed above. To illustrate
this method, we again consider the transition(14). The same
result can be obtained by first evaluating the residue of the
factors (16) in Eq. (15) at the poles on either the upper or
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lower-half complexJ1 plane. In the following calculations, we will choose the poles on the upper-half plane. Thus, we evaluate
the secular effect of Eq.(15) by

l4

23pi
s2pid2Res

z=i0+
He−izt

z3 Res
J1=z

FE dJ2AsJWd]1S 1

J1 − z
−

1

J1 + z
D]1

2S 1

J1 − z
−

1

J1 + z
D]1r0WsJW,0dGJ

� l4

23pi
s2pid2Res

z=i0+
Fe−izt

z3 S− 1

2z3U E dJ2f]1AsJWdgf]1r0WsJW,0dgU
J1=z

DG
� U− l4t5p

225!
E dJ2f]1AsJWdgf]1r0WsJW,0dgU

J1=0
, s18d

where the extra pole ofz−3 is automatically generated from the residue of theJ1 integration at the resonance point. Therefore,
we obtained the same secular time dependence as our previous consideration.

One can repeat a similar calculation for all other possible transitions with arbitrary power ofl. Here, we summarize the
most secular effects for the single resonance part of our system. The detailed derivation is given in Appendix A. The result is

kAsJWdlt �E d2JAsJWdr0WsJW,0d+ F−
l2tp

2
+

l4t5p

s16ds5 ! d
+ ¯ +

s− 1dml2mt4m−3pam

22m−1s4m− 3d!
+ ¯G

3 UE dJ2 [ uf]1AsJWdgf]1r0WsJW,0dguJ1=0 + f]12AsJWdgf]12r0WsJW,0dgU
J1=v2

]

=E d2JAsJWdr0WsJW,0d + l3/2po
m=1

`
s− 1dmsÎltd4m−3am

22m−1s4m− 3d!
UE dJ2 [f]1AsJWdguf]1r0WsJW,0dguJ1=0 + f]12AsJWdgf]12r0WsJW,0dgU

J1=v2

] ,

s19d

wheream is determined by the residues of the propagators[Eq. (18)]

o
hnWj

8
Res
J1=hjj

F 1

nW f2m−1g · VW − z
]1

1

nW f2m−2g · VW − z
]1 ¯ ]1

1

nW f1g · VW − z
G =

am

z4m−4 . s20d

HereohnWj8 means summation over the most secular transitions
defined in Appendix A, andhjj are poles of the propagators

snW fig ·VW −zd−1 on the upper-half complexJ1 plane.
For smalll, Eq. (19) gives a predominant contribution to

kAsJWdlt for t,1/Îl. Therefore, we obtain a stronger secular
contribution of l3/2sÎltd4m−3 for SPS instead of thesl2tdm

contribution in LPS. Since the secular contributions come

from the resonance effects, this implies that SPS have stron-
ger resonance effects than LPS.

In Fig. 2, we show the comparison between the most
secular effects(calculated up tol16) of the single resonance
part (19) with the numerical simulation forAsJWd=J1 and

r0WsJW ,t=0d / s2pd2=ssÎpd−1e−sJ1−J10d2/s2
dsJ2−J20d with l

=0.01,J10=0.3, J20=1.0, ands=1.0. This choice ofs@Îl

ensures thatr0WsJW ,t=0d is wide enough to cover both primary

resonance regions. It also guarantees thatr0WsJW ,t=0d is
smooth enough so that its higher-order derivatives with re-
spect toJ1 do not give significant contributions.

The numerical result is obtained by solving the full
Hamilton’s equation of motion with an ensemble of trajecto-
ries distributed according to the above choice of the prob-
ability density. We have chosen 4000 samples to calculate
the ensemble average ofJ1. We see that Eq.(19) gives a
good approximation to the full dynamics up tot<5/Îl
=50.

In spite of the good agreement between our theoretical
result and the numerical simulation in a certain domain of
time, there are three major discrepancies as shown in Fig. 2.
First, a large discrepancy fort.50 is due to the truncation of
the most secular series atl16. Second, the slight deviation of

FIG. 2. Comparison of the most secular series(19) with the

numerical simulation and the integral representation(22) for AsJWd
=J1.
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the most secular contributions above the numerical result
comes from the fact that we have not taken into account the
resonance interference in our theoretical expression(19).
Third, the flat part of the numerical curve att=0 (which is
known as the Zeno effect[33]) has not been recovered by
our theoretical calculation, as the Zeno effect is known to
come from nonsecular contributions.

In order to improve the approximation for time scales
much longer than 5/Îl, we need to evaluate terms in Eq.
(19) much higher order thanl16. However, this is not an easy
task since the general expression of the coefficientam is very
complicated. Nevertheless, by using the fact that the single
resonance contribution comes from the integrable part of the
Hamiltonian, one can obtain a compact expression of the
series expansion(19) in an integral form. To obtain this in-
tegral representation, we note that the integrable part is es-
sentially a simple pendulum where the solution of the equa-

tions of motion is given by elliptic functions. Using this

exact solution, one can then expandkAsJWdlt perturbatively in
l in the form as

kAsJWdlt − kAsJWdlt=0 = l3/2f3/2std + l2f2std + Osl5/2d,

s21d

where t;Îlt,Os1d in the time scale oft,1/Îl, and
fn/2std with nù3 are functions expressed by the phase space
integration of elliptic functions. Therefore, in the asymptotic
limit considered in this paper(i.e., with t→`, l→0, and
keepingt=Îlt finite), the predominant contribution to Eq.

(21) is given by kAsJWdlt� kAsJWdlt=0+l3/2f3/2std. Here we
present the explicit expression off3/2std as the integral rep-

resentation of Eq.(19) with AsJWd=J1 and r0WsJWd=r1sJ1ddsJ2

−J20d

kJ1lt �E dJ1J1r1sJ1d−
27/2

3
pl3/2r18sJ1dF1 +E

1

`

dxx2S pÎx2 + 1

2xKfÎ2/s1 + x2dg
− 1DG

+ 23l3/2r18sJ1dE
0

1

dxE
−2KsÎxd

2KsÎxd
dbx cnst + b,Îxdcnsb,Îxd+ 25/2l3/2r18sJ1dE

0

1

dxE
−p

p

db
2Î2 − x2

x2

3 F2Ksxd
p

dnfKsxdb/p + t/x,xg − 1GFÎ 2

2 − x2 dnfKsxdb/p,xg − 1G , s22d

where Ksxd is the complete elliptic integral, cnsu,xd and
dnsu,xd are the Jacobian elliptic functions, andr18sJ1d
;dr1sJ1d /dJ1. The detailed derivation of this expression will
be presented in a separate paper[34]. We show in Fig. 2 the
good agreement of the integral representation(22) and the
numerical result for time scales much longer than 5/Îl.

IV. INTERFERENCE BETWEEN RESONANCES

In this section we consider the contributions from the
resonance interference. We will see that the interference
leads to new poles on the complexz plane(besidesz= i0+)
related to higher harmonics in the nonlinear system and gives
rise to secular effects in powers oft as well as oscillations
corresponding to higher-order resonances.

For the weakly coupled casesv2@Îld in which the sepa-
ration between the two primary resonances is large compared
with the width of their separatrices, one may expect that the
interference part gives a small correction to the single reso-
nance part discussed in the preceding section. However, the
consistent estimation of the interference effect is important
even in the weakly coupled case, as this is the first nontrivial
correction that comes from the nonintegrability of the sys-
tem. In the following discussion, we will restrict our consid-
eration to this weakly coupled case.

The interference contributions first appear in fourth order.
We use the following transition as an example to demon-
strate the essence:

u0Wl←
dL1

u1,0l←
dL1

u0Wl←
dL2

u− 1,1l←
dL2

u0Wl. s23d

To simplify our presentation, we considerAsJWd=J1 and

r0WsJWd=r1sJ1ddsJ2−J20d with r1sJ1d=s4p3/2/sde−sJ1−J10d2/s2
as

in the last section. The contribution of the transition(23) to
kJ1lt

s4d is then given by[see Eqs.(11) and (9)]

− l4

25pi
E

C
dz

e−izt

z3 E dJ1
1

J1 − z
]1

2 1

− J1 + v2 − z
]1r1sJ1d,

s24d

where theJ2 integration has been carried out using integra-
tion by parts.

We now apply the procedure discussed in the last section.
The secular effect of Eq.(24) can be obtained by evaluating
the residue of the poles on the upper-half plane ofJ1 as

LI, DRIEBE, AND PETROSKY PHYSICAL REVIEW E69, 066120(2004)

066120-6



− l4

24 E
C

dz
e−izt

z3 Res
J1=z

F 1

J1 − z
]1

2 1

− J1 + v2 − z
]1r1sJ1dG

� − l4

24 E
C

dz
e−izt

z3 UF 2r18sJ1d
sv2 − 2zd3 +

2r19sJ1d
sv2 − 2zd2

+
r1

s3dsJ1d
v2 − 2z

GU
J1=z

, s25d

wherer1
sidsJ1d;]ir1sJ1d /]J1

i . In Eq. (25), a new pole appears
at z=v2/2 in contrast to the single resonance case[see, e.g.,
Eq. (18)]. This new pole comes from the interference
between the propagatorssJ1−zd−1 and s−J1+v2−zd−1. One
then sees from Eq.(25) that the poles fsv2−2zd−n,n
=1,2,3g
lead to the secular effect with oscillations
sl4t2e−iv2t/2,l4te−iv2t/2,¯d while the polez−3 gives rise to
secular effects in powers oft sl4t2,l4t ,¯d.

The secular effect with the oscillatione−iv2t/2 can be easily
related to the periodic orbit associated with the secondary
resonance located atJ1=v2/2 for our system[see Fig. 1(a)].
This periodic orbit comes from the particular solution(J1
=v2/2, u1=v2t /2, u2=v2t) of the Hamilton’s equation of
motion, as the angular frequencyv2/2 of the angle variable
u1 gives the oscillatione−iv2t/2 in the secular effect. However,
in the trajectory approach it is generally not easy to find
higher periodic solutions of nonintegrable systems. By
evaluating the secular effects in the ensemble approach, one
can automatically take into account the contributions from
the resonance effects of these higher periodic motions.

A similar calculation can be applied to otherl4 transi-
tions. After summing the contribution from alll4 transitions,
we find that terms proportional tol4t2 cancel out and thel4

most secular effect of the interference part ofkJ1lt is given
by

− l4tpUS5r18sJ1d
2v2

4 +
5r19sJ1d

4v2
3 +

3r1
s3dsJ1d
8v2

2 +
r1

s4dsJ1d
8v2

DU
J1=0

− l4tpUS5r18sJ1d
2v2

4 −
5r19sJ1d

4v2
3 +

3r1
s3dsJ1d
8v2

2 −
r1

s4dsJ1d
8v2

DU
J1=v2

− U2l4tpr18sJ1d
v2

4 seiv2t/2 + e−iv2t/2dU
J1=v2/2

. s26d

Using the same procedure, we can calculate the most secular
effects from higher-order contributions. Similarly, we find
secular effect with oscillation, e.g., thel6 andl8 most secu-
lar effect are found to be~l6t7seiv2t+e−iv2td /v2

2 and
~l8t11seiv2t+e−iv2td /v2

2, respectively. In Fig. 3, we show the
secular effects of thel4, l6, and l8 contributions fors
=1.0, J10=0.3, J20=1.0, v2=0.8, andl=0.01. We see that
the l4 contribution with oscillation frequencyv2/2 is domi-
nant in the time scale oft,1/Îl for the interference part.

In order to compare our theoretical prediction in this sec-
tion with the numerical simulation, we need to extract the
contribution of interference part from the full dynamics. So
we write kJ1lt in the form of

kJ1lt = kJ1lt=0 + fkJ1ltgdL1
+ fkJ1ltgdL2

+ fkJ1ltgdL1,dL2
,

s27d

where fkJ1ltgdL1,dL2
represents the interference part ofkJ1lt

[i.e., terms in Eq.(11) containing bothdL1 and dL2] while
fkJ1ltgdL1

and fkJ1ltgdL2
denote the contribution from the

single resonance part. From this relation, we see that the
interference part is given byfkJ1ltgdL1,dL2

=kJ1lt−fkJ1ltgdL1
−fkJ1ltgdL2

−kJ1lt=0.
We plot the comparison between our theoretical result

(the sum ofl4, l6 andl8 secular effect from the interference
part) and the numerical simulation in Fig. 4 with the same
parametrization as in Fig. 3. In this figure, the time evolution
of the ensemble averagekJ1lt is numerically calculated by
choosing 5000 samples of trajectories. On the other hand, we
have used the exact analytic expression in terms of the ellip-
tic functions forfkJ1ltgdLi

with i =1,2.

V. BROKEN TIME SYMMETRY

As in the case of LPS, the secular effects of SPS found by
evaluating the resonance effects break time symmetry[5]. To

FIG. 3. Thel4, l6, andl8 order contributions of the most secu-
lar effect for the interference part.

FIG. 4. Comparison of theoretical prediction with numerical
simulation for the interference part.
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see this, let us express the most secular series(19) in terms
of a “time evolution operator”Sstd as

kAsJWdlt − kAsJWdlt=0 �E d2JAsJWdSstdr0WsJW,0d, s28d

with

Sstd ; l3/2ps]1dsJ1d]1 + ]12dsJ1 − v2d]12d

3o
m=1

`
s− 1dmsÎltd4m−3am

22m−1s4m− 3d!
, s29d

which gives the most secular effects of the time evolution.
Let us denote the time-reversal operator byT. The basic

properties ofT are listed in Appendix B. Using these prop-

erties, we see thatTnW ·VW =nW ·VW T, i.e., the eigenvalues of the
unperturbed Liouville operatorL0 are invariant under the
time-reversal operation. As a result, we haveTdsJ1d
=dsJ1dT and TdsJ1−v2d=dsJ1−v2dT. Similarly, we have
Tsn1]1+n2]2d=sn1]1+n2]2dT for the interaction[see Eqs.
(B3)–(B5)]. Therefore, all together we have

TSstd = SstdT Þ Ss− tdT. s30d

On the other hand, the time-reversal symmetry of the time
evolution operatorUstd;exps−iLtd is expressed by(see Ap-
pendix B)

TUstd = Us− tdT. s31d

Hence, the time symmetry of the most secular effect in Eq.
(30) is broken in comparison to Eq.(31).

The origin of the broken time symmetry is the resonance
effect which is evaluated as thed function. The appearance
of thed function comes from the analytic continuation of the
denominator into the complex plane as in the case of LPS
[5], i.e.,

1

nW · VW
⇒

1

nW · VW ± i0+
= P

1

nW · VW
7 ipdsnW · VW d, s32d

whereP denotes the principal part. Indeed, if Eq.(29) would
have the off-resonance contribution from the principal part
instead of thed function part, we would have the same time-
reversal symmetry as in Eq.(31) since there is no factor ofi
in the principal part as shown in Eq.(32).

Note that the secular effects of the interference part dis-
cussed in Sec. IV also come from the effect of resonance
singularities and break time symmetry. Since the order of the
secular effects inl of the interference part are different from
the single resonance part, there is no way to compensate their
broken time symmetric contributions. We also note that thed
function part may contribute only under the integration over
the momentum variables. This implies that time symmetry is
broken only on the ensemble level, but not on the level of
individual trajectories.

VI. CONCLUDING REMARKS

From the results of Secs. III and IV, it is interesting to
compare the most secular effect of the interference part with

the single resonance part. For example, the ratio of thel4

secular effect of the interference part(26) to the l4 single
resonance contribution(18) is given by

S 1

v2t
D4

, SÎl

v2
D4

, s33d

for t,1/Îl. Hence contribution from the interference part is
a small correction in the weakly coupled casesv2@Îld.
However, Eq.(33) shows that the interference part is no
longer a small correction to the single resonance part in the
strongly coupled casesv2,Îld.

We note that the conditionv2,Îl is exactly the same
condition for the onset of global chaos analyzed by Chirikov
[28] in terms of the overlapping condition of the resonances
on the level of trajectory dynamics. It is interesting to find
the same condition by analyzing the secular effects on the
level of ensemble.

In conclusion, we have described in this paper an
asymptotic perturbative approach of studying analytically the
secular effects of nonintegrable small Hamiltonian systems
with few degrees of freedom on the ensemble level. Further-
more, we have shown that these secular effects break time
symmetry.
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APPENDIX A: DERIVATION OF EQS. (19) and (20)

Without loss of generality, we consider a generic transi-

tion su0Wl←
dL1

un1
f2m−1g ,0l←

dL1

¯← un1
f1g ,0l←

dL1

u0Wld of orderl2m cor-
responding to the resonance atJ1=0 in Eq. (11). Its most

secular contribution tokAsJWdlt
s2md is obtained by evaluating

the residues(see Sec. III B) and is given by[using the matrix
element(9)]
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s− 1dms2pidSl

2
D2m

Res
z=i0+

Res
J1=hjj

Fe−izt

z2 E dJ2f]1AsJWdgH 1

nf2m−1gJ1 − z
]1

1

nf2m−2gJ1 − z
¯ ]1

1

nf1gJ1 − z
J]1r0WsJW,0dG , sA1d

wherehjj=hj1,j2,¯ j are poles of the propagators on the upper-half complexJ1 plane. Equation(A1) shows that these poles
should take the formji =z/pi , i =1,2 ,̄ , wherepi Þ0 are positive integers.

Note that extracting the most secular effect from Eq.(A1) means extracting the highest-order pole atz= i0+. Without

changing the highest-order pole structure, we proceed by moving the factor]1r0WsJW ,0d to the front of the curly bracket. The
most secular effect(A1) then becomes

s− 1dms2pidSl

2
D2mU E dJ2s]1AsJWdds]1r0WsJW,0ddU

J1=0
Res
z=i0+

Fe-izt

z2 Res
J1=hjj

F 1

nf2m-1gJ1 - z
]1

1

nf2m-2gJ1 - z
¯ ]1

1

nf1gJ1 - z
GG. sA2d

We also note that the residue evaluated at the polesJ1=hjj in
Eq. (A2) vanishes if allhjj lie above(nfig.0 for all i) or
below (nfig,0 for all i) the real-J1 axis. Therefore, the most
secular effects are given by transitions having both positive
and negativenfig’s which we call the most secular transitions.
For these transitions, it is easy to see that

Res
J1=hjj

F 1

nf2m−1gJ1 − z
]1

1

nf2m−2gJ1 − z
¯ ]1

1

nf1gJ1 − z
G

=
cm,hnf2m−1g,¯,nf1gj

z4m−4 , sA3d

wherecm,hnf2m−1g,¯,nf1gj is a constant depending on the transi-
tion. By using Eq.(A3) and evaluating the residue at the pole
z= i0+ in Eq. (A2), we obtain Eqs.(19) and(20) by defining
am to be the summation of the constantscm,hnf2m−1g,¯,nf1gj in
Eq. (A3) from all most secular transitions. The terms corre-
sponding to the resonanceJ1=v2 in Eq. (19) can be verified
by the same procedure shown above.

APPENDIX B: THE TIME-REVERSAL OPERATOR

The time-reversal operatorT is antilinear[35], i.e.,

Tsc1r1 + c2r2d = c1
*Tr1 + c2

*Tr2, sB1d

for any complex numbersc1,2 and functionsr1,2, wherec1,2
*

is the complex conjugate ofc1,2. Its actions on the time and
phase space variables are given by

Tt = tT, sB2d

for the time variable,

TJ1 = − J1T, Tu1 = u1T, sB3d

for the pendulum(J1 is momentum andu1 is angle),

TJ2 = J2T, Tu2 = − u2T, sB4d

for the harmonic oscillator(J2 is action andu2 is angle) and

Tn1 = − n1T, Tn2 = n2T, sB5d

for the Fourier conjugate variablesnW of the angle variables.
Hence, the time-reversal operator commutes with the Liou-
ville operatorL

TL = LT, sB6d

and the time-reversal symmetry of the time evolution opera-
tor Ustd;exps−iLtd is expressed by Eq.(31).
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